skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Luciano, Keven"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Point-of-care (POC) tests for the diagnosis of diseases are critical to the improvement of the standard of living, especially for resource-limited areas or countries. In recent years, nanobiosensors based on noble metal nanoparticles (NM NPs) have emerged as a class of effective and versatile POC testing technology. The unique features of NM NPs ensure great performance of associated POC nanobiosensors. In particular, NM NPs offer various signal transduction principles, such as plasmonics, catalysis, photothermal effect, and so on. Significantly, the detectable signal from NM NPs can be tuned and optimized by controlling the physicochemical parameters (e.g., size, shape, and elemental composition) of NPs. In this article, we introduce the inherent merits of NM NPs that make them attractive for POC testing, discuss recent advancement of NM NPs-based POC tests, highlight their social impacts, and provide perspectives on challenges and opportunities in the field. We hope the review and insights provided in this article can inspire new fundamental and applied research in this emerging field. 
    more » « less